Direct Numerical Simulation of Fluidization of 1204 Spheres

ثبت نشده
چکیده

One goal pursued there is to demonstrate that numerical experiments on fluidization can be processed in log-log plots for straight lines leading to power laws as did Richardson and Zaki 1954 for real experiments. As far as we know, we are the only group of researchers to carry out this program. There is no prior literature, in which power laws are obtained from numerical experiments. On the other hand, there are a number of numerical packages for particles in fluids that might be used in this way. The methods of Stokesian dynamics (see Brady 1993) can be recommended for problems in which inertia is absent. Hofler, Muller, Schwarzer and Wachmann 1999 introduced two approximate Euler-Lagrangian simulation methods for particle in fluids. In one method, the particle surface is discretitized in grid topology; spheres are polygons on flat places between nodes. In the second method, a volume force term is introduced to emulate rigid body motion on the particle surface; this method is similar to the force coupling methods, introduced by Maxey, Patel 1997. Hofler et al 1999 calculated sedimentation of 65,000 spheres but at Reynolds numbers so small that it is essentially Stokes flow. Johnson and Tezduyar 1999 used a fully resolved DNS/ALE method to compute sedimentation of 1,000 spheres at Reynolds numbers not larger than 10. A fully resolved method which is based on matching explicit Stokes flow representations of flow near particles with computations on a grid has been proposed by Ory, Oguz and Prosperetti 2000. The problem of particulates in turbulent flows has been considered by a few authors: Crowe, Chung, Troutt 1996, McLaughlin 1994, Maxey, Patel, Chang, Wang 1997; these approaches use point particle approximations because fully resolved computations in turbulent flow are not presently possible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluidization of 1204 spheres: simulation and experiment

In this paper we study the fluidization of 1204 spheres at Reynolds numbers in the thousands using the method of distributed Lagrange multipliers. The results of the simulation are compared with a real experiment. This is the first direct numerical simulation of a real fluidized bed at the finite Reynolds number encountered in the applications. The simulations are processed like real experiment...

متن کامل

Numerical Simulation of Fluidization and Sedimentation Phenomena

Motivated by the direct numerical simulation of particulate flow (i.e., of the motion of fluid-particle mixtures) the authors of this paper, with the assistance of several collaborators, have introduced some years ago a computational methodology based on a fictitious domain formulation involving distributed Lagrange multipliers defined over the particles; this approach allows the flow computati...

متن کامل

Mathematical model and numerical simulation of the liquid fluidization of polydisperse solid particle mixtures

A mathematical model for the fluidization of polydisperse suspensions is developed. The stationary concentration configurations for a given fluidizing velocity are analyzed and a mixing condition for bed inversion is derived. A central finite difference scheme is applied to the simulation of the fluidization of a bidisperse suspension. The numerical simulations agree with the experimentally rep...

متن کامل

Vertically shaken column of spheres. Onset of fluidization

The onset of surface fluidization of granular material in a vertically vibrated container, z = A cos (ωt), is studied experimentally. Recently, for a column of spheres it has been theoretically found [1] that the particles lose contact if a certain condition for the acceleration amplitude z̈ ≡ Aω/g = f(ω) holds. This result is in disagreement with other findings where the criterion z̈ = z̈crit = c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002